terça-feira, 27 de novembro de 2012

Le Papyrus de Rhind


Lundi 19 novembre 2012,
Traduit de l'anglais par Hervé....mon ami.
Le Papyrus de Rhind
Le Papyrus de Rhind est considéré comme la plus importante source d‘informations concernant les mathématiques des anciens Égyptiens. Ce rouleau, de 30 cm de haut sur 5,5 mètres de long, a été retrouvé dans une tombe de Thèbes sur la rive Est du Nil. Le scribe Ahmès l’a écrit en hiératique, une écriture dérivée du système hiéroglyphique. Cet écrit ayant été réalisé vers 1650 avant J.C. environ, Ahmès est l’individu le plus anciennement référencé de l'histoire des mathématiques ! Le rouleau contient également les symboles mathématiques les plus anciens connus à ce jour pour des opérations mathématiques : le signe “+” est en effet désigné par une paire de jambes allant vers le nombre à ajouter.
En 1858, l'égyptologue et avocat écossais Alexander Henry Rhind visitait l’Egypte pour soigner des problèmes de santé quand il acheta le parchemin sur un marché à Louxor. Le British Museum de Londres a acquis le rouleau en 1864.
Ahmès écrivit que le papyrus permet un "calcul précis afin d’enquêter sur les choses, et d’avoir la connaissance de toutes choses et de tous mystères ... en toute sécurité ". Le contenu du rouleau traite de problèmes mathématiques intégrant des fractions, des progressions arithmétiques, l'algèbre et la géométrie pyramidale, ainsi que des cas mathématiques utiles à l'arpentage, la construction et la comptabilité. Le problème qui m'intrigue le plus est le problème 79 dont l'interprétation a d'abord été déroutante.
Aujourd'hui, beaucoup interprètent le problème 79 comme un puzzle qui peut être traduit par «Sept maisons contiennent sept chats. Chaque chat tue sept souris. Chaque souris a mangé sept épis. Chaque épi aurait produit sept heqats (1 heqat ou hekat = 4.8 litres) de le blé. Combien cela fait-il d’heqats ?". Fait intéressant, ce mème casse-tête indestructible, impliquant le chiffre 7 et des animaux, semble avoir persisté pendant des milliers d'années ! En effet, nous observons quelque chose de similaire dans le Liber Fibonacci Abati (Livre des calculs), publié en 1202, et plus tard dans le puzzle de St. Ives, un poème pour enfants en vieil anglais qui fait référence à 7 chats.

segunda-feira, 19 de novembro de 2012

Rhind Papyrus

The Rhind Papyrus is considered to be the most important known source of information concerning ancient Egyptians mathematics. This scroll, about a foot (30 cm) high and 18 feet (5.5 meters) long, was found in a tomb in Thebes on the east bank of the river Nile. Ahmes, the scribe, wrote it in hieratic, a script related to the hieroglyphic system. Given that the writing occurred in around 1650 B. C., this makes Ahmes the earliest-known individual in the history of mathematics! The scroll also contains the earliest-known symbols for mathematical operations - plus is denoted by a pair of legs walking toward the number to be added.
In 1858, Scottish lawyer and Egyptologist Alexander Henry Rhind had been visiting Egypt for health reasons when he bought the scroll in a market in Luxor. The British Museum in London acquired the scroll in 1864.
Ahmes wrote that the scroll gives an "accurate reckoning for inquiring into things, and the knowledge of all things, mysteries...all secures." The content of the scroll concerns mathematical problems involving fractions, arithmetic progressions, algebra, and pyramid geometry, as well as practical mathematics useful for surveying, building, and accounting. The problem that intrigues me the most is Problem 79, the interpretation of which was initially baffling.
Today, many interpret Problem 79 as a puzzle, which may be translated as "Seven houses contain seven cats. Each cat kills seven mice. Each mouse had eaten seven ears of grain. Each ear of grain would have produced seven hekats (measures) of wheat. What is the total number of all of these?" Interestingly, this indestructible puzzle meme, involving the number 7 and animals, seems to have persisted through thousands of years! We observe something quite similar in Fibonacci's Liber Abati (Book of Calculation), published in 1202, and later in the St. Ives puzzle, an Old English children's rhyme involving 7 cats.

Plimpton 322

Plimpton 322 refers to a mysterious Babylonian clay tablet featuring numbers in cuneiform script in a table of 4 columns and 15 rows. Eleanor Robson, a historian of science, refers to it as "one of the world's most famous mathematical artifacts." Written around 1800 B. C., the table lists Pythagoreans triples - that is, whole numbers that specify the side lengths of right triangles that are solutions to the Pythagorean theorem a^2 + b^2 = c^2. For example, the numbers 3, 4, and 5 are a Pythagorean triple. The fourth column in the table simply contains the row number. Interpretations vary as to the precise meaning of the numbers in the table, with some scholars suggesting that the numbers were solutions for students studying algebra or trigonometry-like problems.
Plimpton 322 is named after New York publisher George Plimpton who, in 1922, bought the tablet for $10 dollars from a dealer than donated the tabMesopotamia, the fertile valley of the Tigris and Euphrates rivers, which is now located in Iraq. To put the era into perspective, the unknown scribe who generated Plimpton 322lived within about a century of King Hammurabi, famous for his set of laws that included "an eye for an eye, a tooth for a tooth." According to biblical history, Abraham, who is said to have led his people west from the city of Ur on the bank of the Euphrates into Canaan, would have been another near contemporary of the scribe.
The Babylonians wrote on wet clay by pressing a stylus or wedge into the clay. In the Babylonian number system, the number 1 was written with a single stroke and the numbers 2 through 9 were written by combining multiples of a single stroke.

Magic Squares

Legends suggest that magic squares originated in China and were first mentioned in a manuscript from the time of Emperor Yu, around 2200 B.C. A magic square consists of N^2 boxes, called cells, filed with integers that are all different. The sums of the numbers in the horizontal rows, vertical columns, and main diagonal are equal.
If the integers in a magic square are the consecutive numbers from 1 to N^2, the square is said to be of the Nth order, and the magic number, or sum of each row, is a constant equal to N(N^2  + 1)/2.
As far back as 1693, the 880 different fourth-order magic squares were published posthumously in Des quassez ou tables magiques by Bernard Frenicle de Bessy, an eminent amateur french mathematician and one of the leading magic squares of all time.
We've come a long way from the simplest 3 x 3 magic squares venerated by civilizations of almost every period or continent, from the Mayans Indians o the Hasua people of Africa. Today, mathematicians study these magic objects in high dimensions - for example, in the form of fourth-dimensional hypercubes that have magic sums within all appropriate directions.