(2) If n^3 + 5n + 6 is divisible by 3 for some integer n, then (n + 1)^3 + 5(n + 1) + 6 is divisible by 3.
(Scratch work)
(n + 1)^3 + 5(n + 1) + 6 = (n + 1)(n^2 + 2n +1) +5n + 5 + 6
= n^3 + 2n^2 + n + n^2 + 2n + 1 + 5n + 11
= n^3 + 5n + 6 + 3n^2 + 3n + 6
= n^3 + 5n + 6 + 3(n^2 + n + 2)
Proof. Assume that n^3 + 5n + 6 is divisible by 3 for some integer n. Then
3 | (n^3 + 5n + 6) =>
3 | [(n^3 + 5n + 6) + 3(n^2 +n + 2)] =>
3 | [n^3 + 5n + 6 + 3n^2 + 3n + 6] =>
3| [n^3 + 2n^2 +n + n^2 + 2n + 1 + 5n + 11] =>
3| [(n + 1)(n^2 + 2n + 1) + 5n +5 +6] =>
3| [(n + 1)^3 + 5(n + 1) + 6]
QED
Nenhum comentário:
Postar um comentário